4.7 Article

Transport properties of lithium hydride at extreme conditions from orbital-free molecular dynamics

期刊

PHYSICAL REVIEW E
卷 87, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.023104

关键词

-

资金

  1. National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]

向作者/读者索取更多资源

We have performed a systematic study of lithium hydride (LiH), using orbital-free molecular dynamics, with a focus on mass transport properties such as diffusion and viscosity by extending our previous studies at the lower end of the warm, dense matter regime to cover a span of densities from ambient to 10-fold compressed and temperatures from 10 eV to 10 keV. We determine analytic formulas for self-and mutual-diffusion coefficients, and viscosity, which are in excellent agreement with our molecular dynamics results, and interpolate smoothly between liquid and dense plasma regimes. In addition, we find the orbital-free calculations begin to agree with the Brinzinskii-Landau formula above about 250 eV at which point the medium becomes fully ionized. A binary-ion model based on a bare Coulomb interaction within a neutralizing background with the effective charges determined from a regularization prescription shows good agreement above about 100 eV with the orbital-free results. Finally, we demonstrate the validity of a pressure-based mixing rule in determining the transport properties from the pure-species quantities. DOI: 10.1103/PhysRevE.87.023104

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据