4.7 Article

Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Phase diagram

期刊

PHYSICAL REVIEW E
卷 87, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.062813

关键词

-

资金

  1. Delegation Generale de l'Armement
  2. Simons Center for Systems Biology, at the Institute for Advanced Study, Princeton

向作者/读者索取更多资源

We study the stable phases of an attractor neural network model, with binary units, for hippocampal place cells encoding one-dimensional (1D) or 2D spatial maps or environments. Different maps correspond to random allocations (permutations) of the place fields. Based on replica calculations we show that, below critical levels for the noise in the neural response and for the number of environments, the network activity is spatially localized in one environment. For high noise and loads the network activity extends over space, either uniformly or with spatial heterogeneities due to the crosstalk between the maps, and memory of environments is lost. Remarkably the spatially localized regime is very robust against the neural noise until it reaches its critical level. Numerical simulations are in excellent quantitative agreement with our theoretical predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据