4.7 Article

Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops

期刊

PHYSICAL REVIEW E
卷 88, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.88.023015

关键词

-

资金

  1. NASA [NNX09AI83G]
  2. National Science Foundation [CBET-1236582]
  3. Xerox Corporation
  4. Direct For Mathematical & Physical Scien
  5. Division Of Mathematical Sciences [0968258] Funding Source: National Science Foundation
  6. Div Of Chem, Bioeng, Env, & Transp Sys
  7. Directorate For Engineering [1236582] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据