4.7 Article

Modulational instabilities in lattices with power-law hoppings and interactions

期刊

PHYSICAL REVIEW E
卷 87, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.032905

关键词

-

向作者/读者索取更多资源

We study the occurrence of modulational instabilities in lattices with nonlocal power-law hoppings and interactions. Choosing as a case study the discrete nonlinear Schrodinger equation, we consider one-dimensional chains with power-law decaying interactions (with exponent alpha) and hoppings (with exponent beta): An extensive energy is obtained for alpha,beta > 1. We show that the effect of power-law interactions is that of shifting the onset of the modulational instabilities region for alpha > 1. At a critical value of the interaction strength, the modulational stable region shrinks to zero. Similar results are found for effectively short-range nonlocal hoppings (beta > 2): At variance, for longer-ranged hoppings (1 < beta < 2) there is no longer any modulational stability. The hopping instability arises for q = 0 perturbations, thus the system is most sensitive to the perturbations of the order of the system size. We also discuss the stability regions in the presence of the interplay between competing interactions - (e. g., attractive local and repulsive nonlocal interactions). We find that noncompeting nonlocal interactions give rise to a modulational instability emerging for a perturbing wave vector q = pi while competing nonlocal interactions may induce a modulational instability for a perturbing wave vector 0 < q < pi. Since for alpha > 1 and beta > 2 the effects are similar to the effect produced on the stability phase diagram by finite range interactions and/or hoppings, we conclude that the modulational instability is genuinely long-ranged for 1 < beta < 2 nonlocal hoppings. DOI: 10.1103/PhysRevE.87.032905

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据