4.7 Article

Nonequilibrium dynamics of a confined colloidal bilayer in a planar shear flow

期刊

PHYSICAL REVIEW E
卷 88, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.88.052307

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SFB 910, B2]

向作者/读者索取更多资源

Using Brownian dynamics (BD) simulations we investigate the impact of shear flow on structural and dynamical properties of a system of charged colloids confined to a narrow slit pore. Our model consists of spherical microions interacting through a Derjaguin-Landau-Verwey-Overbeek (DLVO) and a soft-sphere potential. The DLVO parameters were chosen according to a system of moderately charged silica particles (with valence Z similar to 35) in a solvent of low ionic strength. At the confinement conditions considered, the colloids form two well-pronounced layers. In the present study we investigate shear-induced transitions of the translational order and dynamics in the layers, including a discussion of the translational diffusion. In particular, we show that diffusion in the shear-melted state can be described by an analytical model involving a single shear-driven particle in a harmonic trap. We also explore the emergence of zigzag motion characterized by spatiotemporal oscillations of the particles in the layers in the vorticity direction. Similar behavior has been recently observed in experiments of much thicker colloidal films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据