4.7 Article

Theoretical investigation of a technique to produce microbubbles by a microfluidic T junction

期刊

PHYSICAL REVIEW E
卷 88, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.88.033027

关键词

-

资金

  1. Ministry of Science and Education [DPI2010-21103, GR10047]
  2. Junta de Extremadura [P08-TEP-04128]
  3. Junta de Andalucia (Spain) [TEP-7465]

向作者/读者索取更多资源

A microfluidic technique is proposed to produce microbubbles. A gaseous stream is injected through a T junction into a channel transporting a liquid current. The gas adheres to a hydrophobic strip printed on the channel surface. When the gas and liquid flow rates are set appropriately, a gaseous rivulet flows over that strip. The rivulet breaks up downstream due to a capillary pearling instability, which leads to a monodisperse collection of microbubbles that can be much smaller than the channel size. The physics of the process is theoretically investigated, using both full numerical simulation of the Navier-Stokes equations and a linear stability analysis of an infinite gaseous rivulet driven by a coflowing liquid stream. This stability analysis allows one to determine a necessary condition to get this effect in a T junction device. It also provides reasonably good predictions for the size of the produced microbubbles as obtained from numerical experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据