4.7 Article

Bioconvection in spatially extended domains

期刊

PHYSICAL REVIEW E
卷 87, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.053016

关键词

-

资金

  1. NSF [CBET-0747727]
  2. Directorate For Engineering
  3. Div Of Chem, Bioeng, Env, & Transp Sys [0747727] Funding Source: National Science Foundation

向作者/读者索取更多资源

We numerically explore gyrotactic bioconvection in large spatially extended domains of finite depth using parameter values from available experiments with the unicellular alga Chlamydomonas nivalis. We numerically integrate the three-dimensional, time-dependent continuum model of Pedley et al. [J. Fluid Mech. 195, 223 (1988)] using a high-order, parallel, spectral-element approach. We explore the long-time nonlinear patterns and dynamics found for layers with an aspect ratio of 10 over a range of Rayleigh numbers. Our results yield the pattern wavelength and pattern dynamics which we compare with available theory and experimental measurement. There is good agreement for the pattern wavelength at short times between numerics, experiment, and a linear stability analysis. At long times we find that the general sequence of patterns given by the nonlinear evolution of the governing equations correspond qualitatively to what has been described experimentally. However, at long times the patterns in numerics grow to larger wavelengths, in contrast to what is observed in experiment where the wavelength is found to decrease with time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据