4.7 Article

Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows

期刊

PHYSICAL REVIEW E
卷 85, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.85.026704

关键词

-

资金

  1. Engineering and Physical Sciences Research Council of the United Kingdom [EP/I012605/1]
  2. Engineering and Physical Sciences Research Council [EP/I012605/1] Funding Source: researchfish
  3. EPSRC [EP/I012605/1] Funding Source: UKRI

向作者/读者索取更多资源

The existing lattice Boltzmann models for incompressible multiphase flows are mostly constructed with two distribution functions: one is the order parameter distribution function, which is used to track the interface between different phases, and the other is the pressure distribution function for solving the velocity field. In this paper, it is shown that in these models the recovered momentum equation is inconsistent with the target one: an additional force is included in the recovered momentum equation. The additional force has the following features. First, it is proportional to the macroscopic velocity. Second, it is zero in every single-phase region but is nonzero in the interface. Therefore it can be interpreted as an interfacial force. To investigate the effects of the additional interfacial force, numerical simulations are carried out for the problem of Rayleigh-Taylor instability, droplet splashing on a thin liquid film, and the evolution of a falling droplet under gravity. Numerical results demonstrate that, with the increase of the velocity or the Reynolds number, the additional interfacial force will gradually have an important influence on the interface and affect the numerical accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据