4.7 Article

Natural discretization of pedestrian movement in continuous space

期刊

PHYSICAL REVIEW E
卷 86, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.86.046108

关键词

-

资金

  1. German Federal Ministry of Education and Research through the project MEPKA on mathematical characteristics of pedestrian stream models [17PNT028]

向作者/读者索取更多资源

Is there a way to describe pedestrian movement with simple rules, as in a cellular automaton, but without being restricted to a cellular grid? Inspired by the natural stepwise movement of humans, we develop a model that uses local discretization on a circle around virtual pedestrians. This allows for movement in arbitrary directions, only limited by the chosen optimization algorithm and numerical resolution. The radii of the circles correspond to the step lengths of pedestrians and thus are model parameters, which must be derived from empirical observation. Therefore, we conducted a controlled experiment, collected empirical data for step lengths in relation with different speeds, and used the findings in our model. We complement the model with a simple calibration algorithm that allows reproducing known density-velocity relations, which constitutes a proof of concept. Further validation of the model is achieved by reenacting an evacuation scenario from experimental research. The simulated egress times match the values reported for the experiment very well. A new normalized measure for space occupancy serves to visualize the results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据