4.7 Article

High-resolution detection of Brownian motion for quantitative optical tweezers experiments

期刊

PHYSICAL REVIEW E
卷 86, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.86.021912

关键词

-

资金

  1. National Center of Competence in Research Nanoscale Science
  2. Swiss National Science Foundation [200021-113529, 206021-121396]
  3. Swiss National Science Foundation (SNF) [206021_121396] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

We have developed an in situ method to calibrate optical tweezers experiments and simultaneously measure the size of the trapped particle or the viscosity of the surrounding fluid. The positional fluctuations of the trapped particle are recorded with a high-bandwidth photodetector. We compute the mean-square displacement, as well as the velocity autocorrelation function of the sphere, and compare it to the theory of Brownian motion including hydrodynamic memory effects. A careful measurement and analysis of the time scales characterizing the dynamics of the harmonically bound sphere fluctuating in a viscous medium directly yields all relevant parameters. Finally, we test the method for different optical trap strengths, with different bead sizes and in different fluids, and we find excellent agreement with the values provided by the manufacturers. The proposed approach overcomes the most commonly encountered limitations in precision when analyzing the power spectrum of position fluctuations in the region around the corner frequency. These low frequencies are usually prone to errors due to drift, limitations in the detection, and trap linearity as well as short acquisition times resulting in poor statistics. Furthermore, the strategy can be generalized to Brownian motion in more complex environments, provided the adequate theories are available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据