4.7 Article

Thermal conduction and interface effects in nanoscale Fermi-Pasta-Ulam conductors

期刊

PHYSICAL REVIEW E
卷 86, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.86.031107

关键词

-

资金

  1. MIDE research program of Aalto University

向作者/读者索取更多资源

We perform classical nonequilibrium molecular dynamics simulations to calculate heat flow through a microscopic junction connecting two larger reservoirs. In contrast to earlier papers, we also include the reservoirs in the simulated region to study the effect of the bulk-nanostructure interfaces and the bulk conductance. The scalar Fermi-Pasta-Ulam (FPU) model is used to describe the effects of anharmonic interactions in a simple manner. The temperature profile close to the junction in the low-temperature limit is shown to exhibit strong directional features that fade out when temperature increases. Simulating both the FPU chain and the two bulk regions is also shown to eliminate the nonmonotonous temperature variations found for simpler geometries and models. We show that, with sufficiently large reservoirs, the temperature profile in the chain does not depend on the details of thermalization used at the boundaries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据