4.7 Article

Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering

期刊

PHYSICAL REVIEW E
卷 84, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.011921

关键词

-

资金

  1. NSF [MCB-1021557]
  2. Direct For Biological Sciences
  3. Div Of Molecular and Cellular Bioscience [1021557] Funding Source: National Science Foundation

向作者/读者索取更多资源

It has been suggested that the three-dimensional structure of one particle may be reconstructed using the scattering from many identical, randomly oriented copies ab initio, without modeling or a priori information. This may be possible if these particles are frozen in either space or time, so that the conventional two-dimensional small-angle x-ray scattering (SAXS) distribution contains fluctuations and is no longer isotropic. We consider the magnitude of the correlated fluctuation SAXS (CFSAXS) signal for typical x-ray free-electron laser (XFEL) beam conditions and compare this against the errors derived with the inclusion of Poisson photon counting statistics. The resulting signal-to-noise ratio (SNR) is found to rapidly approach a limit independent of the number of particles contributing to each diffraction pattern, so that the addition of more particles to a single-particle-per-shot experiment may be of little value, apart from reducing solvent background. When the scattering power is significantly less than one photon per particle per Shannon pixel, the SNR grows in proportion to incident flux. We provide simulations for protein molecules in support of these analytical results, and discuss the effects of solvent background scatter. We consider the SNR dependence on resolution and particle size, and discuss the application of the method to glasses and liquids, and the implications of more powerful XFELs, smaller focused beams, and higher pulse repetition rates for this approach. We find that an accurate CFSAXS measurement may be acquired to subnanometer resolution for protein molecules if a 9-keV beam containing 10(13) photons is focused to a similar to 100-nm spot diameter, provided that the effects of solvent background can be reduced sufficiently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据