4.7 Article

Strong collapse turbulence in a quintic nonlinear Schrodinger equation

期刊

PHYSICAL REVIEW E
卷 84, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.036602

关键词

-

资金

  1. NSF [DMS 0807131]
  2. DOE [1004118]

向作者/读者索取更多资源

We consider the quintic one-dimensional nonlinear Schrodinger equation with forcing and both linear and nonlinear dissipation. Quintic nonlinearity results in multiple collapse events randomly distributed in space and time, forming forced turbulence. Without dissipation each of these collapses produces finite-time singularity, but dissipative terms prevent actual formation of singularity. In statistical steady state of the developed turbulence, the spatial correlation function has a universal form with the correlation length determined by the modulational instability scale. The amplitude fluctuations at that scale are nearly Gaussian while the large-amplitude tail of the probability density function (PDF) is strongly non-Gaussian with powerlike behavior. The small-amplitude nearly Gaussian fluctuations seed formation of large collapse events. The universal spatiotemporal form of these events together with the PDFs for their maximum amplitudes define the powerlike tail of the PDF for large-amplitude fluctuations, i.e., the intermittency of strong turbulence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据