4.7 Article

Colloidal entanglement in highly twisted chiral nematic colloids: Twisted loops, Hopf links, and trefoil knots

期刊

PHYSICAL REVIEW E
卷 84, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.031703

关键词

-

资金

  1. European Commission (EC) [PITN-GA-2008-215851]
  2. Slovenian Research Agency [P1-0099, J1-3612]
  3. Center of Excellence NAMASTE

向作者/读者索取更多资源

The topology and geometry of closed defect loops is studied in chiral nematic colloids with variable chirality. The colloidal particles with perpendicular surface anchoring of liquid crystalline molecules are inserted in a twisted nematic cell with the thickness that is only slightly larger than the diameter of the colloidal particle. The total twist of the chiral nematic structure in cells with parallel boundary conditions is set to 0, pi, 2 pi, and 3 pi, respectively. We use the laser tweezers to discern the number and the topology of the -1/2 defect loops entangling colloidal particles. For a single colloidal particle, we observe that a single defect loop is winding around the particle, with the winding pattern being more complex in cells with higher total twist. We observe that colloidal dimers and colloidal clusters are always entangled by one or several -1/2 defect loops. For colloidal pairs in pi-twisted cells, we identify at least 17 different entangled structures, some of them exhibiting linked defect loops-Hopf link. Colloidal entanglement is even richer with a higher number of colloidal particles, where we observe not only linked, but also colloidal clusters knotted into the trefoil knot. The experiments are in good agreement with numerical modeling using Landau-de Gennes theory coupled with geometrical and topological considerations using the method of tetrahedral rotation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据