4.7 Article

Maximally random jammed packings of Platonic solids: Hyperuniform long-range correlations and isostaticity

期刊

PHYSICAL REVIEW E
卷 84, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.041309

关键词

-

资金

  1. National Science Foundation [DMR-0820341]

向作者/读者索取更多资源

We generate maximally random jammed (MRJ) packings of the four nontiling Platonic solids (tetrahedra, octahedra, dodecahedra, and icosahedra) using the adaptive-shrinking-cell method [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Such packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The MRJ packing fractions for tetrahedra, octahedra, dodecahedra, and icosahedra are, respectively, 0.763 +/- 0.005, 0.697 +/- 0.005, 0.716 +/- 0.002, and 0.707 +/- 0.002. We find that as the number of facets of the particles increases, the translational order in the packings increases while the orientational order decreases. Moreover, we show that the MRJ packings are hyperuniform (i.e., their infinite-wavelength local-number-density fluctuations vanish) and possess quasi-long-range pair correlations that decay asymptotically with scaling r(-4). This provides further evidence that hyperuniform quasi-long-range correlations are a universal feature of MRJ packings of frictionless particles of general shape. However, unlike MRJ packings of ellipsoids, superballs, and superellipsoids, which are hypostatic, MRJ packings of the nontiling Platonic solids are isostatic. We provide a rationale for the organizing principle that the MRJ packing fractions for nonspherical particles with sufficiently small asphericities exceed the corresponding value for spheres (similar to 0.64). We also discuss how the shape and symmetry of a polyhedron particle affects its MRJ packing fraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据