4.7 Article

Microscopic theory of the jamming transition of harmonic spheres

期刊

PHYSICAL REVIEW E
卷 84, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.051103

关键词

-

资金

  1. Fondation CFM-JP Aguilar
  2. Region Languedoc-Roussillon

向作者/读者索取更多资源

We develop a microscopic theory to analyze the phase behavior and compute correlation functions of dense assemblies of soft repulsive particles both at finite temperature, as in colloidal materials, and at vanishing temperature, a situation relevant for granular materials and emulsions. We use a mean-field statistical mechanical approach which combines elements of liquid state theory to replica calculations to obtain quantitative predictions for the location of phase boundaries, macroscopic thermodynamic properties, and microstructure of the system. We focus, in particular, on the derivation of scaling properties emerging in the vicinity of the jamming transition occurring at large density and zero temperature. The new predictions we obtain for pair correlation functions near contact are tested using computer simulations. Our work also clarifies the conceptual nature of the jamming transition and its relation to the phenomenon of the glass transition observed in atomic liquids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据