4.7 Article

Phase-field model of solid-liquid phase transition with density difference and latent heat in velocity and elastic fields

期刊

PHYSICAL REVIEW E
卷 83, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.83.041504

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan

向作者/读者索取更多资源

We present a phase-field model of solid-liquid transitions with inhomogeneous temperature in one-component systems, including hydrodynamics and elasticity. Our model can describe plastic deformations at large elastic strains. We use it to investigate the melting of a solid domain, accounting for the latent heat effect, where there appears a velocity field in liquid and an elastic field in solid. We present simulation results in two dimensions for three cases of melting. First, a solid domain is placed on a heated wall, which melts mostly near the solid-liquid-wall contact region. Second, a solid domain is suspended in a warmer liquid under shear flow, which rotates as a whole because of elasticity and melts gradually. Cooling of the surrounding liquid is accelerated by convection. Third, a solid rod is under high compression in liquid, where slips appear from the solid-liquid interface, leading to a plastic deformation. Subsequently, melting starts in the plastically deformed areas, eventually resulting in the fracture of the rod into pieces. In these phase-transition processes, the interface temperature is kept nearly equal to the coexisting temperature T-cx(p) away from the heated wall, but this local equilibrium is not attained near the the contact region. We also examine a first-order liquid-liquid phase transition under heating from a boundary in one-component liquids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据