4.7 Article

Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method

期刊

PHYSICAL REVIEW E
卷 84, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.025702

关键词

-

资金

  1. U.S. Department of Energy [DE-FG02-85ER40237]
  2. Science Foundation Ireland [08/RFP/PHY1462]
  3. Science Foundation Ireland (SFI) [08/RFP/PHY1462] Funding Source: Science Foundation Ireland (SFI)

向作者/读者索取更多资源

The stationary points (SPs) of a potential-energy landscape play a crucial role in understanding many of the physical or chemical properties of a given system. However, unless they are found analytically, no efficient method is available to obtain all the SPs of a given potential. We present a method, called the numerical polynomial-homotopy-continuation method, which numerically finds all the SPs, and is embarrassingly parallelizable. The method requires the nonlinearity of the potential to be polynomial-like, which is the case for almost all of the potentials arising in physical and chemical systems. We also certify the numerically obtained SPs so that they are independent of the numerical tolerance used during the computation. It is then straightforward to separate out the local and global minima. As a first application, we take the XY model with power-law interaction, which is shown to have a polynomial-like nonlinearity, and we apply the method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据