4.7 Article

Response of Morris-Lecar neurons to various stimuli

期刊

PHYSICAL REVIEW E
卷 83, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.83.021915

关键词

-

资金

  1. NSFC [10975063]
  2. Fundamental Research Funds for the Central Universities [lzujbky-2009-52]

向作者/读者索取更多资源

We studied the responses of three classes of Morris-Lecar neurons to sinusoidal inputs and synaptic pulselike stimuli with deterministic and random interspike intervals (ISIs). It was found that the responses of the output frequency of class 1 and 2 neurons showed similar evolution properties by varying input amplitudes and frequencies, whereas class 3 neuron exhibited substantially different properties. Specifically, class 1 and 2 neurons display complicated phase locking (p : q, p > q, denoting output action potentials per input spikes) in low-frequency sinusoidal input area when the input amplitude is above their threshold, but a class 3 neuron does not fire action potentials in this area even if the amplitude is much higher. In the case of the deterministic ISI synaptic injection, all the three classes of neurons oscillate spikes with an arbitrary small frequency. When increasing the input frequency (both sinusoidal and deterministic ISI synaptic inputs), all neurons display 1 : 1 phase locking, whereas the response frequency decreases even fall to zero in the high-frequency input area. When the random ISI synaptic pulselike stimuli are injected into the neurons, one can clearly see the low-pass filter behaviors from the return map. The output ISI distribution depends on the mean ISI of input train as well as the ISI variation. Such different responses of three classes of neurons result from their distinct dynamical mechanisms of action potential initiation. It was suggested that the intrinsic dynamical cellular properties are very important to neuron information processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据