4.7 Article

Complete high-precision entropic sampling

期刊

PHYSICAL REVIEW E
卷 84, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.026701

关键词

-

资金

  1. CNPq
  2. Fapemig (Brazil)

向作者/读者索取更多资源

Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce tomographic entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the full range of energies, without dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for system sizes L = 10-160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios beta/nu and gamma/nu are given to within about 0.04% and 1%, respectively, of the literature values. In both two and three dimensions, results for the antiferromagnetic critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios beta/nu and gamma/nu to good precision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据