4.7 Article

Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation

期刊

PHYSICAL REVIEW E
卷 84, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.041810

关键词

-

资金

  1. DFG
  2. RFBR [436 RUS 113/791, 09-03-91339]
  3. Russian Ministry of Education and Science [16.523.12.3001]

向作者/读者索取更多资源

Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness (capillary nematization). The other transition is a continuous (or very weakly first-order) transition in the layers adjacent to the hard planar walls from the disordered phase, where the bond vectors of the macromolecules show local ordering (i.e., preferential orientation along the x or y axes of the simple cubic lattice, but no long-range orientational order occurs), to a quasi-two-dimensional nematic phase (with the director at each wall being oriented along either the x or y axis), while the bulk of the film is still disordered. When the chemical potential or monomer density increase, respectively, the thickness of these surface-induced nematic layers grows, causing the disappearance of the disordered region in the center of the film.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据