4.7 Article

Propagation of firing rate by synchronization and coherence of firing pattern in a feed-forward multilayer neural network

期刊

PHYSICAL REVIEW E
卷 81, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.061924

关键词

-

资金

  1. National Natural Science Foundation of China [10905089]
  2. TianYuan Special Funds [10926065]
  3. Key Laboratory of Quark & Lepton Physics (Huazhong Normal University) [QLPL200905]

向作者/读者索取更多资源

When neurons in layer 1 fire irregularly under stochastic noise, it is found synchronous firings can develop gradually in latter layers within a feed-forward multilayer neural network, which is consistent with experimental findings. The underlying mechanism of propagation of firing rate is explored, then rate encoding realized by synchronization is clarified. Furthermore, the effects of connection probability between nearest layers, stochastic noise, and ratio of inhibitory connections to total connection on (i) propagation of firing rate by synchronization and (ii) coherence of firing pattern are investigated, respectively. It is observed that (i) there is a threshold for connection probability, beyond which firing rate of each layer can propagate successfully through the whole network by synchronization. The dependence of firing rate on layer index is very different for different connection probability. In addition, larger the connection probability is, more rapidly the synchrony is built up. (ii) Increasing intensity of stochastic noise enhances firing rate in output layer. Stochastic noise plays a constructive role in improving synchrony by causing the synchronization more quickly. (iii) The inhibitory connection offsets excitatory input therefore reduces firing rate and synchrony. As layer index increases, coherence measure goes through a peak, i. e., the coherence of firing pattern is the worst at certain a layer. With increasing the ratio of inhibitory connections, the variability of firing train is enhanced, exhibiting destructive role of inhibitory connections on coherence of firing pattern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据