4.7 Article

Diffuse-charge effects on the transient response of electrochemical cells

期刊

PHYSICAL REVIEW E
卷 81, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.021503

关键词

-

资金

  1. U.S. National Science Foundation [DMS-0842504, DMS-0855011]
  2. [MC3.05236]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Mathematical Sciences [0854905] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present theoretical models for the time-dependent voltage of an electrochemical cell in response to a current step, including effects of diffuse charge (or space charge) near the electrodes on Faradaic reaction kinetics. The full model is based on the classical Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions to describe electron-transfer reactions across the Stern layer at the electrode surface. In practical situations, diffuse charge is confined to thin diffuse layers (DLs), which poses numerical difficulties for the full model but allows simplification by asymptotic analysis. For a thin quasi-equilibrium DL, we derive effective boundary conditions on the quasi-neutral bulk electrolyte at the diffusion time scale, valid up to the transition time, where the bulk concentration vanishes due to diffusion limitation. We integrate the thin-DL problem analytically to obtain a set of algebraic equations, whose (numerical) solution compares favorably to the full model. In the Gouy-Chapman and Helmholtz limits, where the Stern layer is thin or thick compared to the DL, respectively, we derive simple analytical formulas for the cell voltage versus time. The full model also describes the fast initial capacitive charging of the DLs and superlimiting currents beyond the transition time, where the DL expands to a transient non-equilibrium structure. We extend the well-known Sand equation for the transition time to include all values of the superlimiting current beyond the diffusion-limiting current.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据