4.7 Article

Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins

期刊

PHYSICAL REVIEW E
卷 81, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.061910

关键词

-

资金

  1. DARPA
  2. MIT Energy Initiative (MITEI)
  3. Office of Naval Research

向作者/读者索取更多资源

Mechanical properties of structural protein materials are crucial for our understanding of biological processes and disease states. Through utilization of molecular simulation based on stress wave tracking, we investigate mechanical energy transfer processes in fibrous beta-sheet-rich proteins that consist of highly ordered hydrogen bond (H-bond) networks. By investigating four model proteins including two morphologies of amyloids, beta solenoids, and silk beta-sheet nanocrystals, we find that all beta-sheet-rich protein fibrils provide outstanding elastic moduli, where the silk nanocrystal reaches the highest value of approximate to 40 GPa. However, their capacities to dissipate mechanical energy differ significantly and are controlled strongly by the underlying molecular structure of H-bond network. Notably, silk beta-sheet nanocrystals feature a ten times higher energy damping coefficient than others, owing to flexible intrastrand motions in the transverse directions. The results demonstrate a unique feature of silk nanocrystals, their capacity to simultaneously provide extreme stiffness and energy dissipation capacity. Our results could help one to explain the remarkable properties of silks from an atomistic and molecular perspective, in particular its great toughness and energy dissipation capacity, and may enable the design of multifunctional nanomaterials with outstanding stiffness, strength, and impact resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据