4.7 Article

Reconstruction algorithm for single-particle diffraction imaging experiments

期刊

PHYSICAL REVIEW E
卷 80, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.026705

关键词

expectation-maximisation algorithm; image reconstruction; light diffraction; optical tomography

向作者/读者索取更多资源

We introduce the EMC algorithm for reconstructing a particle's three-dimensional (3D) diffraction intensity from very many photon shot-noise limited two-dimensional measurements, when the particle orientation in each measurement is unknown. The algorithm combines a maximization step (M) of the intensity's likelihood function, with expansion (E) and compression (C) steps that map the 3D intensity model to a redundant tomographic representation and back again. After a few iterations of the EMC update rule, the reconstructed intensity is given to the difference-map algorithm for reconstruction of the particle contrast. We demonstrate reconstructions with simulated data and investigate the effects of particle complexity, number of measurements, and the number of photons per measurement. The relatively transparent scaling behavior of our algorithm provides an estimate of the data processing resources required for future single-particle imaging experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据