4.7 Article

Revision of capillary cone-jet physics: Electrospray and flow focusing

期刊

PHYSICAL REVIEW E
卷 79, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.066305

关键词

capillarity; drops; flow instability; flow measurement; jets; microfluidics; nanofluidics; sprays

向作者/读者索取更多资源

Capillary cone jets are natural microfluidic structures arising in steady capillary tip streaming, whose paradigms are electrospray and flow focusing phenomena. In this work, we make a profound revision of the basic underlying physics of generic cone jets from thousands of experimental measurements, most of them reported in the literature. First, the boundaries of the stability region of steady jetting are calculated. We describe these limitations by instability mechanisms associated with the local flow structure in the tip and the issuing jet and with the global behavior of the meniscus. Second, to undertake a general physical treatment of cone jets in steady regime, we analyze the energy balance taking place in the tips of both flow focusing and electrospray. This analysis yields a fundamental result: if the electrospray data are expressed in terms of an effective pressure drop, both phenomena satisfy the same scaling law for the droplet size, which exhibits nearly complete similarity in the parameter window where quasimonodisperse sprays are produced. That effective pressure drop is a function of the liquid properties exclusively, i.e., it does not depend on the operational parameters (flow rate and applied voltage). Moreover, the stability limits of the operational regimes are analyzed in detail, finding fundamental coincidences between flow focusing and electrospray as well. These results provide most useful general description and predictive scaling laws for nearly monodisperse microspraying or nanospraying based on steady cone jets, of immediate applicability in analytical chemistry, chemical engineering, biochemistry, pharmaceutical and food technologies, painting, and many other technological fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据