4.7 Article

Nonlinear q-voter model

期刊

PHYSICAL REVIEW E
卷 80, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.041129

关键词

Fokker-Planck equation; percolation; phase transformations; probability

资金

  1. Spanish MEC (FEDER) [FIS2007-66485-C02-01]
  2. Spanish MICINN-FEDER [FQM-01505, FIS2009-08451]

向作者/读者索取更多资源

We introduce a nonlinear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have a unanimous opinion, still a voter can flip its state with probability epsilon. We solve the model on a fully connected network (i.e., in mean field) and compute the exit probability as well as the average time to reach consensus by employing the backward Fokker-Planck formalism and scaling arguments. We analyze the results in the perspective of a recently proposed Langevin equation aimed at describing generic phase transitions in systems with two (Z(2)-symmetric) absorbing states. In particular, by deriving explicitly the coefficients of such a Langevin equation as a function of the microscopic flipping probabilities, we find that in mean field the q-voter model exhibits a disordered phase for high epsilon and an ordered one for low epsilon with three possible ways to go from one to the other: (i) a unique (generalized-voter-like) transition, (ii) a series of two consecutive transitions, one (Ising-like) in which the Z(2) symmetry is broken and a separate one (in the directed-percolation class) in which the system falls into an absorbing state, and (iii) a series of two transitions, including an intermediate regime in which the final state depends on initial conditions. This third (so far unexplored) scenario, in which a type of ordering dynamics emerges, is rationalized and found to be specific of mean field, i.e., fluctuations are explicitly shown to wash it out in spatially extended systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据