4.7 Article

Localization-delocalization transition in Hessian matrices of topologically disordered systems

期刊

PHYSICAL REVIEW E
卷 79, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.041105

关键词

eigenvalues and eigenfunctions; Hessian matrices; liquid theory; vibrational modes

资金

  1. National Science Council of Taiwan [NSC 97-2112-M009-005-MY2]

向作者/读者索取更多资源

Using the level-spacing (LS) statistics, we have investigated the localization-delocalization transitions (LDTs) in Hessian matrices of a simple fluid with short-ranged interactions. The model fluid is a prototype of topologically disordered systems and its Hessian matrices are recognized as an ensemble of Euclidean random matrices with elements subject to several kinds of constraints. Two LDTs in the Hessian matrices are found, with one in the positive-eigenvalue branch and the other in the negative-eigenvalue one. The locations and the critical exponents of the two LDTs are estimated by the finite-size scaling for the second moments of the nearest-neighbor LS distributions. Within numerical errors, the two estimated critical exponents are almost coincident with each other and close to that of the Anderson model (AM) in three dimensions. The nearest-neighbor LS distribution at each LDT is examined to be in a good agreement with that of the AM at the critical disorder. We conclude that the LDTs in the Hessian matrices of topologically disordered systems exhibit the critical behaviors of orthogonal universality class.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据