4.7 Article

Partner selections in public goods games with constant group size

期刊

PHYSICAL REVIEW E
卷 80, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.026121

关键词

game theory; network theory (graphs); random processes; stochastic processes

资金

  1. NSFC [60674050, 60736022, 60528007]
  2. National 973 Program [2002CB312200]
  3. National 863 Program [2006AA04Z258]
  4. 11-5 project [A2120061303]
  5. China Scholarship Council [2007U01235]

向作者/读者索取更多资源

Most of previous studies concerning the public goods game assume either participation is unconditional or the number of actual participants in a competitive group changes over time. How the fixed group size, prescribed by social institutions, affects the evolution of cooperation is still unclear. We propose a model where individuals with heterogeneous social ties might well engage in differing numbers of public goods games, yet with each public goods game being constant size during the course of evolution. To do this, we assume that each focal individual unidirectionally selects a constant number of interaction partners from his immediate neighbors with probabilities proportional to the degrees or the reputations of these neighbors, corresponding to degree-based partner selection or reputation-based partner selection, respectively. Because of the stochasticity the group formation is dynamical. In both selection regimes, monotonical dependence of the stationary density of cooperators on the group size was found, the latter over the whole range but the former over a restricted range of the renormalized enhancement factor. Moreover, the reputation-based regime can substantially improve cooperation. To interpret these differences, the microscopic characteristics of individuals are probed. We later extend the degree-based partner selection to general cases where focal individuals have preferences toward their neighbors of varying social ties to form groups. As a comparison, we as well investigate the situation where individuals locating on the degree regular graphs choose their coplayers at random. Our results may give some insights into better understanding the widespread teamwork and cooperation in the real world.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据