4.7 Article

Self-organized criticality of a catalytic reaction network under flow

期刊

PHYSICAL REVIEW E
卷 80, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.010902

关键词

-

资金

  1. [19740260]

向作者/读者索取更多资源

Self-organized critical behavior in a catalytic reaction network system induced by smallness in the molecule number is reported. The system under a flow of chemicals is shown to undergo a transition from a stationary to an intermittent reaction phase when the flow rate is decreased. In the intermittent reaction phase, two temporal regimes with active and halted reactions alternate. The number frequency of reaction events at each active regime and its duration time are shown to obey a universal power law with the exponents 4/3 and 3/2, respectively, independently of the parameters and network structure. These power laws are explained by a one-dimensional random-walk representation of the number of catalytically active chemicals. Possible relevance of the result to reaction dynamics in artificial and biological cells is briefly discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据