4.7 Article

Mean-field theory of a recurrent epidemiological model

期刊

PHYSICAL REVIEW E
卷 79, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.066105

关键词

diseases

向作者/读者索取更多资源

Our purpose is to provide a mean-field theory for the discrete time-step susceptible-infected-recovered-susceptible (SIRS) model on uncorrelated networks with arbitrary degree distributions. The effect of network structure, time delays, and infection rate on the stability of oscillating and fixed point solutions is examined through analysis of discrete time mean-field equations. Consideration of two scenarios for disease contagion demonstrates that the manner in which contagion is transmitted from an infected individual to a contacted susceptible individual is of primary importance. In particular, the manner of contagion transmission determines how the degree distribution affects model behavior. We find excellent agreement between our theoretical results and numerical simulations on networks with large average connectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据