4.7 Article

Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains

期刊

PHYSICAL REVIEW E
卷 80, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.056201

关键词

bifurcation; pattern formation; reaction-diffusion systems

向作者/读者索取更多资源

Pattern formation mechanisms of a reaction-diffusion-advection system, with one diffusivity, differential advection, and (Robin) boundary conditions of Danckwerts type, are being studied. Pattern selection requires mapping the domains of coexistence and stability of propagating or stationary nonuniform solutions, which for the general case of far from instability onsets, is conducted using spatial dynamics and numerical continuations. The selection is determined by the boundary conditions which either preserve or destroy the translational symmetry of the model. Accordingly, we explain the criterion and the properties of stationary periodic states if the system is bounded and show that propagation of nonlinear waves (including solitary) against the advective flow corresponds to coexisting family that emerges nonlinearly from a distinct oscillatory Hopf instability. Consequently, the resulting pattern selection is qualitatively different from the symmetric finite wavenumber Turing or Hopf instabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据