4.7 Article

Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel-Kontorova model

期刊

PHYSICAL REVIEW E
卷 79, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.056601

关键词

earthquakes; seismic waves; tectonics

向作者/读者索取更多资源

The one-dimensional Frenkel-Kontorova (FK) model, well known from the theory of dislocations in crystal materials, is applied to the simulation of the process of nonelastic stress propagation along transform faults. Dynamic parameters of plate boundary earthquakes as well as slow earthquakes and afterslip are quantitatively described, including propagation velocity along the strike, plate boundary velocity during and after the strike, stress drop, displacement, extent of the rupture zone, and spatiotemporal distribution of stress and strain. The three fundamental speeds of plate movement, earthquake migration, and seismic waves are shown to be connected in framework of the continuum FK model. The magnitude of the strain wave velocity is a strong (almost exponential) function of accumulated stress or strain. It changes from a few km/s during earthquakes to a few dozen km per day, month, or year during afterslip and interearthquake periods. Results of the earthquake parameter calculation based on real data are in reasonable agreement with measured values. The distributions of aftershocks in this model are consistent with the Omori law for temporal distribution and a 1/r for the spatial distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据