4.7 Article

Persistent fluctuations of activity in undriven continuum neural field models with power-law connections

期刊

PHYSICAL REVIEW E
卷 79, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.011918

关键词

biological tissues; fluctuations; neural nets; neurophysiology; statistics

资金

  1. Centre for Scientific Computing at the University of Warwick
  2. HPC systems

向作者/读者索取更多资源

We study the effect of random inhomogeneous connections on a continuous field description of neural tissue. We focus on a regime in which persistent random fluctuations in activity arise spontaneously in the absence of either time-varying or spatially inhomogeneous input. While present in real tissue and network models of discrete neurons, such behavior has not been reported in continuum models of this type. The activity contains frequencies similar to those seen experimentally. We consider a power-law envelope r(-alpha) for the inhomogeneity and present evidence that the statistical coherence (a measure of two-point correlation) rapidly percolates across the system as alpha is reduced below alpha(c)approximate to 1,2 in one and two dimensions, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据