4.7 Article

Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions

期刊

PHYSICAL REVIEW E
卷 79, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.036311

关键词

bioMEMS; chaos; hydrodynamics; microchannel flow; mixing; segregation; suspensions

资金

  1. National Nanotechnology Infrastructure Network (NSF) [ECS-0335765, 0630191]
  2. ACS Petroleum Research Fund
  3. North American Mixing Forum
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [0630191] Funding Source: National Science Foundation

向作者/读者索取更多资源

We investigate the mixing and segregation of mono- and bidispersed microsphere suspensions in microchannel flows. These flows are common in biological microelectromechanical systems (BioMEMS) applications handling blood or suspensions of DNA. Suspension transport in pressure driven flows is significantly hindered by shear-induced migration, where particles migrate away from the walls and are focused in the center due to multibody hydrodynamic interactions. The microchannels used in this study have geometries that induce chaotic advection in Newtonian fluids. Our results show that mixing in straight, herringbone and staggered herringbone channels depends strongly on volume fraction. Due to this complex interplay of advection and shear-induced migration, a staggered herringbone channel that typically results in chaotic mixing is not always effective for dispersing particles. The maximum degree of segregation is observed in a straight channel once the maximum packing fraction is reached at channel center. We modify a one-dimensional suspension balance model [R. Miller and J. Morris, J. Non-Newtonian Fluid Mech. 135, 149 (2006)] to describe the behavior at the center of the straight channel. The degree of mixing is then calculated as a function of bulk volume fraction, predicting the volume fraction that results in the maximum degree of segregation. In bidispersed suspension flow, it is shown that mixing of the larger species is enhanced in straight and staggered herringbone channels while segregation is enhanced at moderate volume fractions in herringbone channels. This suggests mixing and separations can be tailored by adjusting both the suspension properties and the channel geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据