4.7 Article

Exact algorithm for sampling the two-dimensional Ising spin glass

期刊

PHYSICAL REVIEW E
卷 80, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.046708

关键词

Anderson model; Ising model; long-range order; spin glasses

资金

  1. NSF [0606424]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [0606424] Funding Source: National Science Foundation

向作者/读者索取更多资源

A sampling algorithm is presented that generates spin-glass configurations of the two-dimensional Edwards-Anderson Ising spin glass at finite temperature with probabilities proportional to their Boltzmann weights. Such an algorithm overcomes the slow dynamics of direct simulation and can be used to study long-range correlation functions and coarse-grained dynamics. The algorithm uses a correspondence between spin configurations on a regular lattice and dimer (edge) coverings of a related graph: Wilson's algorithm [D. B. Wilson, Proceedings of the Eighth Symposium on Discrete Algorithms (SIAM, Philadelphia, 1997), p 258] for sampling dimer coverings on a planar lattice is adapted to generate samplings for the dimer problem corresponding to both planar and toroidal spin-glass samples. This algorithm is recursive: it computes probabilities for spins along a separator that divides the sample in half. Given the spins on the separator, sample configurations for the two separated halves are generated by further division and assignment. The algorithm is simplified by using Pfaffian elimination rather than Gaussian elimination for sampling dimer configurations. For n spins and given floating point precision, the algorithm has an asymptotic run-time of O(n(3/2)); it is found that the required precision scales as inverse temperature and grows only slowly with system size. Sample applications and benchmarking results are presented for samples of size up to n=128(2), with fixed and periodic boundary conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据