4.7 Article

Lagrangian topology of a periodically reoriented potential flow: Symmetry, optimization, and mixing

期刊

PHYSICAL REVIEW E
卷 80, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.036208

关键词

bifurcation; chaos; confined flow; flow control; flow instability; mixing; pulsatile flow

向作者/读者索取更多资源

Scalar transport in closed potential flows is investigated for the specific case of a periodically reoriented dipole flow. Despite the irrotational nature of the flow, the periodic reorientations effectively create heteroclinic and/or homoclinic points arising from the joining of stable and unstable manifolds. For scalar advection, Lagrangian chaos can be achieved with breakdown of the regular Hamiltonian structure, which is governed by symmetry conditions imposed by the dipole flow. Instability envelopes associated with period-doubling bifurcations of fixed points govern which regions of the flow control parameter space admit global chaos. These regions are further refined via calculation of Lyapunov exponents. These results suggest significant scalar transport enhancement is possible within potential flows, given appropriate programming of stirring protocols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据