4.7 Article

Spectral element method for band structures of two-dimensional anisotropic photonic crystals

期刊

PHYSICAL REVIEW E
卷 79, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.026705

关键词

band structure; convergence of numerical methods; finite element analysis; Legendre polynomials; photonic crystals

资金

  1. National Science Foundation [CCF-0621862]
  2. NBRPC [2007CB935500]
  3. NSFC [10574163, 90306016]
  4. CSC [2007102844]

向作者/读者索取更多资源

A spectral element method (SEM) is proposed for the accurate calculation of band structures of two-dimensional anisotropic photonic crystals. It uses Gauss-Lobatto-Legendre polynomials as the basis functions in the finite-element framework with curvilinear quadrilateral elements. Coordination mapping is introduced to make the curved quadrilateral elements conformal with the problem geometry. Mixed order basis functions are used in the vector SEM for full vector calculation. The numerical convergence speed of the method is investigated with both square and triangular lattices, and with isotropic and in-plane anisotropic media. It is shown that this method has spectral accuracy, i.e., the numerical error decreases exponentially with the order of basis functions. With only four points per wavelength, the SEM can achieve a numerical error smaller than 0.1%. The full vector calculation method can suppress all spurious modes with nonzero eigenvalues, thus making it easy to filter out real modes. It is thus demonstrated that the SEM is an efficient alternative method for accurate determination of band structures of two-dimensional photonic crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据