4.7 Article

Quantum and classical dynamics of Langmuir wave packets

期刊

PHYSICAL REVIEW E
卷 79, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.066402

关键词

electric fields; nonlinear differential equations; plasma Langmuir waves; plasma light propagation; plasma simulation; Rayleigh-Ritz methods; Schrodinger equation

向作者/读者索取更多资源

The quantum Zakharov system in three spatial dimensions and an associated Lagrangian description, as well as its basic conservation laws, are derived. In the adiabatic and semiclassical cases, the quantum Zakharov system reduces to a quantum modified vector nonlinear Schroumldinger (NLS) equation for the envelope electric field. The Lagrangian structure for the resulting vector NLS equation is used to investigate the time dependence of the Gaussian-shaped localized solutions, via the Rayleigh-Ritz variational method. The formal classical limit is considered in detail. The quantum corrections are shown to prevent the collapse of localized Langmuir envelope fields, in both two and three spatial dimensions. Moreover, the quantum terms can produce an oscillatory behavior of the width of the approximate Gaussian solutions. The variational method is shown to preserve the essential conservation laws of the quantum modified vector NLS equation. The possibility of laboratory tests in the next generation intense laser-solid plasma compression experiment is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据