4.7 Article

Glass formation and crystallization of a simple monatomic liquid

期刊

PHYSICAL REVIEW E
卷 79, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.051501

关键词

amorphous state; crystallisation; melting; molecular dynamics method; thermodynamics; vitrification

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan

向作者/读者索取更多资源

A simple monatomic system in two dimensions with a double-well interaction potential is investigated in a wide range of temperatures by molecular-dynamics simulation. The system is melted and equilibrated well above the melting temperature, and then it is quenched to a temperature 88% below the melting temperature at several cooling rates to produce an amorphous state. Various thermodynamic quantities are measured as functions of temperature while the system is heated at a constant rate. The glass transition is observed with a sudden increase in the energy and the glass transition temperature is shown to be an increasing function of the cooling rate in the preparation process of the amorphous state. In a relatively high-temperature region, the system gradually transforms into crystals, and the time-temperature-transformation curve shows a typical nose shape. It is found that the transformation time to a crystalline state is the shortest at a temperature 14-15 % below the melting temperature and that at sufficiently low temperatures the system does not transform into a crystalline state within an observation time in our simulation. This indicates that a long-lived glassy state is realized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据