4.7 Article

Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics study

期刊

PHYSICAL REVIEW E
卷 77, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.066103

关键词

-

向作者/读者索取更多资源

Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7 +/- 0.9 ps, and bond-overlap population analysis has been used to calculate reaction rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据