4.7 Article

Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division

期刊

PHYSICAL REVIEW E
卷 77, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.011902

关键词

-

向作者/读者索取更多资源

FtsZ is a bacterial protein that forms filaments that play an essential role in midcell constriction during the process of cell division. The shape of individual filaments of different lengths imaged with atomic force microscopy was modeled considering the protein monomers as beads in a chain and a few parameters to represent their effective interactions. The flexural rigidity and persistence length of the filaments were estimated. This latter value was comparable to the filament length, implying that these biological polymers are halfway between the perfectly stiff linear aggregate whose shapes are fully controlled by the angle between the monomers and highly flexible polymers whose shapes follow a random walk model. The lateral interactions between adjacent filaments, also estimated in the modeling, were found to play an essential role in determining the final shape and kinetics of the coiled structures found in longer polymers. The estimated parameters were used to model the behavior of the polymers also on a cylindrical surface. This analysis points to the formation of helical structures that suggest a mechanism for force generation and amplification through the development of FtsZ spirals at the midcell division point.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据