4.7 Article

Identifying network communities with a high resolution

期刊

PHYSICAL REVIEW E
卷 77, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.016104

关键词

-

向作者/读者索取更多资源

Community structure is an important property of complex networks. The automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a modularity function (Q). However, the problem of modularity optimization is NP-hard and the existing approaches often suffer from a prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit; i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm QCUT, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that QCUT can find higher modularities and is more scalable than the existing algorithms. Furthermore, using QCUT as an essential component, we propose a recursive algorithm HQCUT to solve the resolution limit problem. We show that HQCUT can successfully detect communities at a much finer scale or with a higher accuracy than the existing algorithms. We also discuss two possible reasons that can cause the resolution limit problem and provide a method to distinguish them. Finally, we apply QCUT and HQCUT to study a protein-protein interaction network and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据