4.7 Article

Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field

期刊

PHYSICAL REVIEW E
卷 78, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.021403

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  2. Inoue Enryo Memorial Foundation for Promoting Sciences, Toyo University

向作者/读者索取更多资源

We analyze the dynamics of paramagnetic particles on a paramagnetic substrate under a rotational magnetic field. When the paramagnetic particles are subjected to a rotational magnetic field, the rotational plane of which is perpendicular to the substrate surface, the particles form chain clusters caused by the dipole-dipole interaction between the particles and these clusters display a tumbling motion under certain conditions. In this case, the angular momentum of the clusters is converted to a translational one through the force of friction acting between the particles and substrate and, as a result, the clusters move along the surface of the substrate. We analyze the conditions under which the tumbling motion occurs and the dependence of the translational velocity of a cluster on the control parameters by the Stokesian dynamics method. Based on the dynamics of magnetic particles, we propose a method of manipulating nano- and microparticles using a rotational magnetic field. We demonstrate the manipulation of magnetic and nonmagnetic particles, a carbon nanotube, and a biological cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据