4.7 Article

Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method

期刊

PHYSICAL REVIEW E
卷 77, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.011910

关键词

-

向作者/读者索取更多资源

The expected firing probability of a stochastic neuron is approximated by a function of the expected subthreshold membrane potential, for the case of colored noise. We propose this approximation in order to extend the recently proposed white noise model [A. V. Chizhov and L. J. Graham, Phys. Rev. E 75, 011924 (2007)] to the case of colored noise, applying a refractory density approach to conductance-based neurons. The uncoupled neurons of a single population receive a common input and are dispersed by the noise. Within the framework of the model the effect of noise is expressed by the so-called hazard function, which is the probability density for a single neuron to fire given the average membrane potential in the presence of a noise term. To derive the hazard function we solve the Kolmogorov-Fokker-Planck equation for a mean voltage-driven neuron fluctuating due to colored noisy current. We show that a sum of both a self-similar solution for the case of slow changing mean voltage and a frozen stationary solution for fast changing mean voltage gives a satisfactory approximation for the hazard function in the arbitrary case. We demonstrate the quantitative effect of a temporal correlation of noisy input on the neuron dynamics in the case of leaky integrate-and-fire and detailed conductance-based neurons in response to an injected current step.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据