4.7 Article

Phase resetting, phase locking, and bistability in the periodically driven saline oscillator:: Experiment and model

期刊

PHYSICAL REVIEW E
卷 78, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.036217

关键词

-

资金

  1. PAPIIT-UNAM [IN109307-2]
  2. Canadian Institutes of Health Research [MOP-43846]

向作者/读者索取更多资源

The saline oscillator consists of an inner vessel containing salt water partially immersed in an outer vessel of fresh water, with a small orifice in the center of the bottom of the inner vessel. There is a cyclic alternation between salt water flowing downwards out of the inner vessel into the outer vessel through the orifice and fresh water flowing upwards into the inner vessel from the outer vessel through that same orifice. We develop a very stable (i.e., stationary) version of this saline oscillator. We first investigate the response of the oscillator to periodic forcing with a train of stimuli (period=T-p) of large amplitude. Each stimulus is the quick injection of a fixed volume of fresh water into the outer vessel followed immediately by withdrawal of that very same volume. For T-p sufficiently close to the intrinsic period of the oscillator (T-0), there is 1:1 synchronization or phase locking between the stimulus train and the oscillator. As Tp is decreased below T0, one finds the succession of phase-locking rhythms:1:1, 2:2, 2:1, 2:2, and 1:1. As Tp is increased beyond T-0, one encounters successively 1:1, 1:2, 2:4, 2:3, 2:4, and 1:2 phase-locking rhythms. We next investigate the phase-resetting response, in which injection of a single stimulus transiently changes the period of the oscillation. By systematically changing the phase of the cycle at which the stimulus is delivered (the old phase), we construct the new-phase-old-phase curve (the phase transition curve), from which we then develop a one-dimensional finite-difference equation (map) that predicts the response to periodic stimulation. These predicted phase-locking rhythms are close to the experimental findings. In addition, iteration of the map predicts the existence of bistability between two different 1:1 rhythms, which was then searched for and found experimentally. Bistability between 1:1 and 2:2 rhythms is also encountered. Finally, with one exception, numerical modeling with a phenomenologically derived Rayleigh oscillator reproduces all of the experimental behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据