4.7 Article

Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition

期刊

PHYSICAL REVIEW E
卷 78, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.031922

关键词

-

资金

  1. U. S. Army Research Office under Multi-University Research Initiative [DAAD19-01-1-0603]
  2. EU [012915]

向作者/读者索取更多资源

Recent advances in the photonics and optics industries have produced great demand for ever more sophisticated optical devices, such as photonic crystals. However, photonic crystals are notoriously difficult to manufacture. Increasingly, therefore, researchers have turned towards naturally occurring photonic structures for inspiration and a wide variety of elaborate techniques have been attempted to copy and harness biological processes to manufacture artificial photonic structures. Here, we describe a simple, direct process for producing an artificial photonic device by using a naturally occurring structure from the wings of the butterfly Papilio blumei as a template and low-temperature atomic layer deposition of TiO2 to create a faithful cast of the structure. The optical properties of the organic-inorganic diffraction structures produced are assessed by normal-incidence specular reflectance and found to be well described by multilayer computation method using a two-dimensional photonic crystal model. Depending on the structural integrity of the initially sealed scale, it was found possible not only to replicate the outer but also the inner and more complex surfaces of the structure, each resulting in distinct multicolor optical behavior as revealed by experimental and theoretical data. In this paper, we also explore tailoring the process to design composite skeleton architectures with desired optical properties and integrated multifunctional (mechanical, thermal, optical, fluidic) properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据