4.7 Article

Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Benard convection

期刊

PHYSICAL REVIEW E
卷 77, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.016302

关键词

-

向作者/读者索取更多资源

Direct numerical simulation and stereoscopic particle image velocimetry of turbulent convection are used to gather spatial data for the calculation of structure functions. We wish to add to the ongoing discussion in the literature whether temperature acts as an active or passive scalar in turbulent convection, with consequences for structure-function scaling. The simulation results show direct confirmation of the scalings derived by Bolgiano and Obukhov for turbulence with an active scalar for both velocity and temperature statistics. The active-scalar range shifts to larger scales when the forcing parameter (Rayleigh number) is increased. Furthermore, a close inspection of local turbulent length scales (Kolmogorov and Bolgiano lengths) confirms conjectures from earlier studies that the oft-used global averages are not suited for the interpretation of structure functions. In the experiment, a characterization of the domain-filling large-scale circulation of confined convection is carried out for comparison with other studies. The measured velocity fields are also used to calculate velocity structure functions, further confirming the Bolgiano-Obukhov scalings when interpreted with the local turbulent length scales found in the simulations. An extended self-similarity analysis shows that the relative scalings are different for the Kolmogorov and Bolgiano-Obukhov regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据