4.7 Article

Deterministic escape dynamics of two-dimensional coupled nonlinear oscillator chains

期刊

PHYSICAL REVIEW E
卷 77, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.061135

关键词

-

向作者/读者索取更多资源

We consider the deterministic escape dynamics of a chain of coupled oscillators under microcanonical conditions from a metastable state over a cubic potential barrier. The underlying dynamics is conservative and noise free. We introduce a two-dimensional chain model and assume that neighboring units are coupled by Morse springs. It is found that, starting from a homogeneous lattice state, due to the nonlinearity of the external potential the system self-promotes an instability of its initial preparation and initiates complex lattice dynamics leading to the formation of localized large amplitude breathers, evolving in the direction of barrier crossing, accompanied by global oscillations of the chain transverse to the barrier. A few chain units accumulate locally sufficient energy to cross the barrier. Eventually the metastable state is left and either these particles dissociate or pull the remaining chain over the barrier. We show this escape for both linear rodlike and coil-like configurations of the chain in two dimensions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据