4.7 Article

Role of surfactant molecules in magnetic fluid: Comparison of Monte Carlo simulation and electron magnetic resonance

期刊

PHYSICAL REVIEW E
卷 78, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.061507

关键词

colloids; iron compounds; magnetic fluids; magnetic particles; magnetic resonance; Monte Carlo methods; nanoparticles; organic compounds; surfactants

资金

  1. CAPES
  2. CNPq
  3. DPP- UnB
  4. IF-UFG
  5. FUNAPE

向作者/读者索取更多资源

We investigate a magnetic fluid composed of magnetite nanoparticles surfacted with dodecanoic acid molecules and stably dispersed in a hydrocarbon solvent. A comparison between Monte Carlo simulation and different experimental techniques allows us to validate our methodology and investigate the behavior of the surfactant molecules. Our analysis, based on the Langmuir model, suggests that the surfactant grafting number on isolate nanoparticles increases with the nanoparticle concentration, while the grafting on agglomerated nanoparticles presents a more complicated behavior. Our results suggests that, if properly coated and at a certain concentration range, colloids can become stable even in the presence of agglomerates. The role of the Hamaker constant, which controls the van der Waals interaction intensity, was also investigated. We have found that the ratio between grafting and Hamaker constant governs the level of nanoparticle agglomeration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据